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Figure 1: Error Propagation due to a single bit-flip

Abstract
We propose PECCA, an ECC scheme utilizing AN Codes to correct

single-bit and arithmetic errors caused by transient faults. We ana-

lyzed how soft errors can have second order-effects on the results

of common arithmetic modules. We also developed a correction

and detection algorithm for AN Codes. With our weight generation

scheme, we were able to find a PECCA code that could correct up to

Arithmetic Distance of 3. Finally, we observed that our correction

scheme can correct up to 42-bits of error introduced by a single

bit-flip in a multiplier, while still potentially being able to correct

more.
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1 Introduction
One the most important expectations from any computer is reliabil-

ity and accuracy, for without it, modern computing would not be

the industry it is today. An unreliable system leads to unexpected

behavior and unforeseen consequences. On the scope of a computer,

that can mean creating exceptions caught by software or corrected

by internal logic. However, these problems due to unreliability can

propagate further into a processor, leading to worse consequences.

Outside of the scope of a computer, unreliable behavior can lead to

monetary damages, damage to company trust, and even harm for

humans interacting directly with the unreliable system.

Often, the very environment in which the system operates de-

creases the reliability of the system. Transient faults (soft errors)

are non-recurring events that impact charge on a transistor and

lead to unforeseen behavior, such as a random bit being flipped.

Soft errors can be caused by a variety of different sources, such as

electromagnetic interference or even neutrons in the atmosphere

and in space. For systems under extreme conditions, the chance

of transient faults occurring increases, and in turn so does their

chance of causing errors to propagate within the system. Addition-

ally, these events can often be silent and go undetected for long

periods of operational time, only being detected once they cause

unexpected behaviors or system failure. Thus, the need to detect

and simultaneously correct these silent data corruptions arises.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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Currently, pointers are a weak point terms of transient faults.

When a single bit is flipped inside of a pointer’s address, it could

lead to unforeseen behavior with any instruction that attempts to

use that address. As of now, one of the best solutions to check-

ing pointers is Pointer Authentication Codes (PAC’s). PAC’s are a

hardware-based security mechanism designed to protect pointers

and control flow in modern processors. PAC’s work by cryptograph-

ically authenticating pointers using a secret key and a cryptographic

function to generate a signature. This signature is embedded within

the unused high-order bits of the pointer, allowing processors to

verify the integrity and authenticity of pointers during runtime. If

a pointer is modified by an attacker, the integrity check will detect

the fault and cause an exception, ending the program. This solu-

tion has been implemented in Armv8.3-A and above architectures

(including Apple Silicon devices). PAC’s have been proven to be

effective for thwarting attacks; however, there is no ability for the

program in fault to recover.

2 Related and Previous Works
Reliability is a well-studied topic in the field of Computer Architec-

ture. Several disciplines and applications, such as space, medical,

automotive, and elections, necessitate that these systems operate

correctly. We note a survey [7] and overview on the currently used

methodologies for implementing Error Correction and Detection

in Embedded Systems.

Previous work has also been made for identifying vulnerable

parts of a processor and protecting them against transient faults

[4]. Additionally this work extends to identifying (in a mostly non-

intrusive manner) how these errors propagate throughout a system.

[5] describes a methodology for observing how errors propagate

while under directed radiation testing. We note that there is cur-

rently no work done in identifying the propagation of errors at RTL

or without using a physical design; as such, we had to implement

our own solution to simulate the expected gate-level behavior.

A common error correction and detection scheme is the Ham-

ming Code [1]. Hamming Codes are commonly used to encode

and protect data under noisy channels or with strict reliability con-

cerns. We will offer further discussion into how the Hamming Code

works and why it does not fit our use case of encoding pointers for

reliability.

Our paper focuses on AN Codes, an encoding scheme which we

will describe in greater detail later. [3] delves into theory behind

AN Codes and how they are used to ensure reliability in arithmetic

units. Some work has been done on applying AN Codes in soft-

ware and hardware beyond their introduction [6]. We note that

our application of AN Codes is specific to pointers and offers a

more comprehensive analysis on arithmetic modules generating

arithmetic errors. We also considered [2], which does offer analysis

on AN Codes and an alternate version of them. However, we note

that this paper dismisses any analysis on arithmetic errors and

only considers single bit-flips, which is inherently prohibitive on

expounding the true benefits of AN Codes.

3 Error Correcting Codes
Error Correcting Codes (ECC) are a way to detect and correct Soft

Errors - commonly targeting single bit-flips - that might arise in

a highly volatile environment. All ECC schemes work by taking

the original data (word) and then applying a code on top of it to

transform it into an encoded form. The encoded form of the word

is known as a codeword. Using this codeword, the ECC scheme can

detect if the data has been corrupted by an unexpected event by

checking if the codeword exists in the codebook. We will describe

at a high level how ECC’s detect and correct these errors. Within

this paper we discuss ECC schemes and the codes they operate

using their binary notation.

3.1 ECC Background
We define the codebook of a code as the set of codewords that can

be generated using a given code on a range. For example, consider

a code M and a finite set of words in the range [𝐴, 𝐵]. A code,

according to its ECC scheme, applies a transformation 𝑀 (𝐴) to
each word, where 𝑀 (𝑁 ) is the encoding operation for a word 𝑁 .

The set of all words fromA to Bwith the encoding operation applied

(i.e.,𝑀 (𝐴), 𝑀 (𝐴 + 1), ..., 𝑀 (𝐵)) becomes the codebook of M.

ECC schemes perform their correction and detection methods

by first evaluating if a given word is within their codebook. Given

a codebook S and a word A, if 𝐴 ∈ 𝑆 , then A is a valid codeword

and requires no correction or detection. If 𝐴 ∉ 𝑆 , then A is not a

valid codeword and must be accordingly for the ECC scheme that

created the codebook. When 𝐴 ∉ 𝑆 , A is defined as an error code.

However, depending on the ECC scheme and the code chosen, an

error code might appear as a valid codeword. Consider what would

occur if there existed two codewords in a codebook: 00 and 11. If

a user generated the codeword 00 and a random bit flip occurred -

transforming the codeword to 01 - the ECC scheme would detect

the error code and perform its correction or detection procedures.

However, if a subsequent bit-flip occurred - further transforming

the codeword to 11 - the ECC scheme would be unable to correct

the error as it would see the codeword as belonging to its codebook.

Even though the value generated by the user is now incorrect and

could potentially cause an error, the ECC scheme would be unable

to correct or detect the error. Thus, choosing a proper ECC scheme

and code is vital to ensuring correctness.

3.2 Overview of Hamming Codes
A commonly used ECC scheme is Hamming encoding. Hamming

codes are used in a range of applications, such as ensuring correct-

ness in a noisy data channel or securing DRAM against soft errors.

Hamming codes work by applying the encoding scheme on top

of the original data. Instead of directly transforming the original

code, the encoding is a series of bits that is concatenated onto the

original code.

The Hamming (7,4) code is a widely used form of the Hamming

code scheme. It applies 3 parity bits onto 4 bits of data to create

a codeword that is 7 bits long. As our paper does not focus on

Hamming Codes, we will not go in depth as to how the Hamming

Code correction and detection scheme functions. For our work, the

most important part of the scheme is the Single-Error Correcting

and Double-Error Detecting (SECDED) properties of the Hamming

Code. If a bit-flip occurs in a Hamming encoded value, it can be

corrected using a parity check. If two bit flips occur, the error cannot
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be corrected but may be detected and used to trigger an exception

for the OS to handle.

3.3 Hamming Weight and Distance
Hamming Weight - for the purposes of the binary representations

of all codewords in this paper - is defined as the number of "1" bits in

a codeword. For example, the decimal number "12" has a Hamming

Weight of 2, because the binary representation of 12 (1100) has two

non-zero bits.

Hamming Distance is defined in relation to two codewords. It is

the absolute value of the difference in their Hamming Weights. For

example, the Hamming Distance d between codewords 0010 and

1011 is |1 − 3|, which means 𝑑 = 2.

The distance d of a codeword can be used to find up to many er-

rors a given code can correct up. The maximum correctable distance

D a given code can correct up is defined as

𝐷 = ⌊𝑑−1
2
⌋

For example, the distance d between all elements of the codebook

of Hamming (7,4) codes is 3. Given the equation above, Hamming

(7,4) codes can correct up to only one error. For Hamming codes, the

error is a bit-flip, or an error that generates a Hamming Distance

of 1 between the original codeword and the error code.

3.4 Pitfalls of Hamming Codes for Use with
Pointers

SECDED codes, such as the Hamming (7,4) code, cannot correct or

detect an error code that arose from an error or bit-flip of 3 or more

bits. This is because the error will result in another word that is in

the codebook of the Hamming (7,4) code, as outlined earlier.

We observe that because of the inherent properties of Hamming

codes, they cannot be easily applied to secure pointers against

transient faults. Pointers are also often the subject of arithmetic

operations (addition, subtraction, multiplication, etc.) that must

be applied to access the correct memory addresses which the user

requires. If a pointer were to be encoded using a Hamming code,

performing these operations would break the encoding of the parity

bits. Furthermore, encoding the values that will be used in the

operation will not ensure that the encoding will still be valid for the

end result. Hamming codes are a form of linear block code, but are

not in the same linear space as the arithmetic operations applied to

pointers.

Thus, the arithmetic operations that pointers are subject to ne-

cessitate an encoding scheme which operates on the same linear

space as the aforementioned operations.

4 Arithmetic Errors
In this paper, we propose the usage of AN Codes, an ECC scheme

that is compatible with pointer arithmetic. AN Codes function on

the same linear space as the operations applied to pointers, so

long as the operands are also encoded. In order to additionally

motivate the usage of AN-codes, we will discuss further pitfalls

of traditionally used Hamming codes by observing a second-order

effect of single-bit flips.

4.1 Error Ripple Model
The effects of transient faults are not limited solely by the scope of

registers or memory. We argue that logic elements in a processor

are significantly more vulnerable to memory elements. We illus-

trate this by offering the example of unexpected behavior within a

multiplexor induced by a bit-flip.

Figure 2: Error Propagation due to a Single-Bit flip

Consider what would occur if a transient fault were to flip the

select bit on a multiplexer. This could cause an unintended value to

propagate further into the program, leading to further unintended

effects. Although later logic has a chance to mask out the unin-

tended propagated value, there is also a chance that the error might

still continue further into other dependent logical or memory ele-

ments. As a consequence, this invalid result may be latched into a

memory element.

We also note that on logic elements, such as amultiplexer, there is

no inherent Error-Correcting capability present. Amemory element

may be protected by ECC, but logic elements are unprotected and,

as such, are more vulnerable to transient faults.

We introduce the Error Ripple Model by analyzing the effects of

a bit-flip on the carry bits of a Ripple-Carry Adder.

Figure 3: Error Ripple due to a Bit-flip in a Ripple-Carry
Adder

In Figure 3, we illustrate what would occur if a bit-flip caused

a gate in the carry generation to output the incorrect value of

carry out. This example shows an arithmetic error of 1; that is, a
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single error in the arithmetic has occurred and has resulted in a

Hamming Distance of 1 between the expected and actual result of

the operation.

When a single-bit flip occurs in a logical gate, the Hamming

Distance between the expected and actual result of the operation

may be much greater than one. We will discuss our analysis and

findings later about how a single error can ripple throughout an

arithmetic module and the way in which Hamming Codes cannot

recover from such errors.

4.2 Arithmetic Weight and Distance
Before our analysis of how arithmetic errors can propagate in com-

monly used modules, we must first discuss Arithmetic Weight and

Distance, as they are a vital part of this analysis and our work with

AN codes.

Arithmetic Weight is defined as the minimum number of terms

required to represent a number in standard polynomial form. Since

we use binary representations of codewords in this paper, we will

discuss this in terms of binary. The ArithmeticWeight is the number

of non-zero bits in that minimum representation.

To determine the arithmetic weight of a number, one must start

with its decimal representation. For example, take the codeword

that is represented by the decimal number 7. In binary form, it can

be represented as 0111, since 7 = 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20.
The number of non-zero terms in this polynomial representation

of 7 is 3. However, 7 may be represented in another form. It can

be written as 1001, since 7 = 1 ∗ 23 − 0 ∗ 22 − 0 ∗ 21 − 1 ∗ 20, the
number of nonzero terms in this polynomial representation is 2.

The minimum number of terms that can be used to represent 7 is 2;

therefore, the Arithmetic Weight w of 7 is 2.

Arithmetic Distance is defined as the weight of the difference

between two numbers. To find the Arithmetic Distance between

two codewords x and y, simply find their difference 𝑥 −𝑦, and then
take the Arithmetic Weight w of their difference:𝑤 (𝑥 − 𝑦).

4.3 Arithmetic Error Testing Methodology
We analyzed how a single bit-flip would cause errors to ripple

throughout a common arithmetic component. In order to do this, we

created a custom simulation in C++ that wouldmimic the logic-level

behavior of gates and wires. We did not simulate any transistor-

level components of the gate, as we were only concerned with the

outputs of a bit-flip affecting further gates. We also do not consider

metastability within our simulation. Our simulation allowed us

to create distinct gates and propagate values from gate-to-gate.

Additionally, it allowed us to insert bit-flips on a specific gate to

observe the effects of how a bit-flip would propagate to the final

result.

To gain some insight into how a single-bit flip could impact the

result of a common module, we tested how errors would propagate

on three different arithmetic modules: a 64-bit Ripple-Carry Adder,

a 64-bit Kogge-Stone Adder, and a 64-bit (32-bit inputs) Carry-Save

Multiplier. Our reasoning was that these arithmetic operations

would be commonly applied on pointers and as such, we wanted to

observe how Error Rippling would affect the final result of these

pointer operations.

Our testing method consisted of multiple repetitions of iterating

through every gate in the module and flipping the result of the

logical operation of a gate. We utilized random inputs within the

range of the possible inputs for the module. We would then observe

the Hamming Distance and the Arithmetic Distance between the

observed result and the expected result.

4.4 Error Propagation of the Ripple-Carry
Adder

Figure 4: Histogram of Error Hamming Distances for RCA

In Figure 4 we plot the histogram of Hamming Distance between

the actual and expected result. Out of 10,011 total bit-flips, 17.14%

of the gate bit-flips in the RCA resulted in a Hamming Distance

greater than 1, meaning these errors could not be recovered by

normal Hamming Code means.

We also analyzed the Arithmetic Distance between the actual

and expected result. For all gate bit-flips, the only two observed

Arithmetic Distance values were 0 and 1. 5.71% of bit-flips resulted

in Arithmetic Distance of 0, and 94.29% of bit-flips resulted in Arith-

metic Distance of 1.

4.5 Error Propagation of the Kogge-Stone Adder

Figure 5: Histogram of Error Hamming Distances for KSA

We plot the histogram of Hamming Distances in Figure 5 for

the Kogge-Stone Adder. In contrast to the RCA, the KSA’s bit-flip
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Table 1: Gate Count of the Arithmetic Modules

Module AND Gates OR Gates XOR Gates

Ripple-Carry Adder 128 64 193

Kogge-Stone Adder 770 385 192

Carry-Save Multiplier 3072 1024 2048

injection results in a Hamming Distance of 0 in 39.50% of the 14,818

cases. We believe that this large amount of low Hamming Distances

might be caused by the Group Propagate logic masking out bit-flips.

Figure 6: Histogram of Error Arithmetic Distances for KSA

Additionally, in Figure 6, we plot the histogram of the Arithmetic

Distance between the Actual and Expected Result. Unlike the RCA,

the Arithmetic Distances are not exclusive to the values 0 and 1. We

observe that 16.55% of gate bit-flips result in an Arithmetic Distance

greater than 1. The maximum Arithmetic Distance observed in our

testing was 9.

This increased Arithmetic Distance could imply that the archi-

tecture of the Kogge-Stone Adder as compared to the Ripple-Carry

Adder is what leads to an increased Arithmetic Error. Although

the KSA tends to mask faults more frequently than the RCA, the

faults which manage to propagate through have more pronounced

effects on the final result due to the Group Generate and Propagate

structures.

4.6 Error Propagation of the Carry-Save
Multiplier

In Figure 7, we have also plotted the histogram of Hamming Dis-

tance between the actual and expected result. Out of 12289 total

bit-flips, 51.64% resulted in a Hamming Distance greater than 1.

28.74% of cases resulted in a Hamming Distance greater than 2,

meaning these errors would go undetected by the Hamming (7,4)

Code scheme.

For the Arithmetic Distance between the actual and the expected

result, it also only resulted in Arithmetic Distance values of 0 and 1.

We believe that this is due to the fact that the Carry-Save Multiplier

is built using Carry-Save Adders, which are built using Ripple-Carry

Adders. As such, the similar internal linear architecture leads to

a maximum of Arithmetic Error of 1. 3.91% of bit-flips resulted in

Figure 7: Histogram of Error Hamming Distances for CSM

an Arithmetic Distance of 0, and 96.09% of bit-flips resulted in an

Arithmetic Distance of 1.

5 AN Codes
In this paper, we argue for the usage of AN Codes for use in Error

Correcting methodologies for pointers. AN Codes operate on the

same linear space as the operations that are applied to pointers,

meaning that the encoding of the pointer will be preserved so long

as the operand is encoded with the same AN Code. Additionally,

a code using the AN Code scheme can correct more than a single

bit-flip as well as recover from multi-bit errors that arise from

arithmetic errors, as previously shown in the Error Ripple Model.

5.1 Overview of AN Codes
AN Codes are an encoding scheme that uses a number, A, to encode
a word. To ensure clarity, we write all A encoding values in decimal

form, except when writing the encoding or decoding procedure.

The encoding operation is as follows: to encode a word, multiply

it by A. For example, if the code 13 is used, and the word that must

be encoded is 00001010, then the codeword is: 1101 ∗ 00001010 =
10000010.

The decoding operation is as follows: to decode a codeword,

divide it by A. For example, if the code is 13, and the codeword is

001001111101, then the word is 001001111101/1101 = 00110001.

To demonstrate how AN codes are suited for use with point-

ers, we illustrate by example as to how AN codes can be used in

conjunction with arithmetic operations.

Consider the code 7, which was used to generate the codeword

𝑝𝑡𝑟 = 001001000101 from the word 01010011. If the operation

𝑝𝑡𝑟 + 0100 is meant to be applied to it, all of the operands must be

encoded using the same AN Code. This means that the operand

0100 must be converted to 00011100 by means of multiplying the

original operand by 7. At this point, the operation can be applied

since all operands are encoded by the AN Code. The result will

then be 001001000101 + 00011100 = 001001100001. Thus, 𝑝𝑡𝑟 =

001001100001. If we decode the value using the AN Code, the result

is 01010111, which is the expected result from adding together the

non-encoded values.
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5.2 Range of AN Code Values
The range of possible values for a code A must be carefully consid-

ered before analysis. The maximum value for the code A is 2
𝑚−𝑛

,

where m is the maximum number of bits that a codeword can use,

and n is the maximum number of bits used by the words which will

populate the codebook.

For the purposes of our paper, we use 48-bit pointers that are

used in a 64-bit space. Therefore, our range of AN Code values

is [1, 216]. However, using the code 1 is the same as applying no

encoding due to the way the encoding and decoding methods work.

5.3 Error Correction and Detection Algorithm
The AN Code correction and detection algorithm is more complex

than the Hamming Code algorithm of checking parity bits. We now

discuss our implementation of the correction algorithm for AN

Codes.

Similar to other ECC schemes, the maximum correctable distance

D of an AN code is given as ⌊𝑑−1
2
⌋. For AN Codes, the distance d

is the minimal Arithmetic Distance, not Hamming Distance.

To detect an arithmetic error for an A value of A, we can check if

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 %𝐴 == 0. If the modulo result is not 0, then the codeword

is not in the codebook for A and an error must have occurred.

In order to correct an arithmetic error, wemust find the codeword

with the smallest Arithmetic Distance from the error code. This is

similar to how other ECC schemes such as Hamming (7,4) Codes

correct their errors. However, the algorithm for finding the nearest

codeword is more complex for AN Codes.

We use the following formula to find the codeword with the

nearest Arithmetic Distance:

Algorithm 1 AN Code Correction

1: function CorrectPtr(𝑒𝑛𝑐_𝑝𝑡𝑟, 𝑒𝑛𝑐, 𝐷, 𝑎𝑟𝑖𝑡ℎ𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑢𝑚𝑠:

map<arith. weight, array<int»)

2: if 𝑒𝑛𝑐_𝑝𝑡𝑟 mod 𝑒𝑛𝑐 = 0 then
3: return 𝑒𝑛𝑐_𝑝𝑡𝑟

4: end if
5: for 𝑖 ← 0 to 𝐷 − 1 do
6: for 𝑗 ← 0 to |𝑎𝑟𝑖𝑡ℎ𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑢𝑚𝑠 [𝑖] | − 1 do
7: 𝑐ℎ𝑒𝑐𝑘_𝑎𝑑𝑑 ← 𝑒𝑛𝑐_𝑝𝑡𝑟 + 𝑎𝑟𝑖𝑡ℎ𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑢𝑚𝑠 [𝑖] [ 𝑗]
8: 𝑐ℎ𝑒𝑐𝑘_𝑠𝑢𝑏 ← 𝑒𝑛𝑐_𝑝𝑡𝑟 − 𝑎𝑟𝑖𝑡ℎ𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑢𝑚𝑠 [𝑖] [ 𝑗]
9: if 𝑐ℎ𝑒𝑐𝑘_𝑎𝑑𝑑 mod 𝑒𝑛𝑐 = 0 then
10: return 𝑐ℎ𝑒𝑐𝑘_𝑎𝑑𝑑

11: end if
12: if 𝑐ℎ𝑒𝑐𝑘_𝑠𝑢𝑏 mod 𝑒𝑛𝑐 = 0 then
13: return 𝑐ℎ𝑒𝑐𝑘_𝑠𝑢𝑏

14: end if
15: end for
16: end for
17: return −1 ⊲ Error

18: end function

To find the nearest arithmetic codeword, we must take our error

code and both add and subtract a number with a given arithmetic

weight to the error code. We want to find the arithmetically closest

codeword so we start with numbers with Arithmetic Weight 1 and

Table 2: Count of numbers in Arithmetic Weight Bins

Arithmetic Weight Count

1 126

2 5859

3 120837

4 1825859

5 21679273

6 210855079

go up until the maximum arithmetic weight D that A (also referred

to as enc) is allowed to correct.

5.4 Methodology for Generating Weights
To know the Arithmetic Weights that a given AN Code could add or

subtract to attempt correction, we first had to generate arithWeight-
Nums, a map that contains numbers sorted into bins of Arithmetic

Weights. To create the items that would populate a bin of Arith-

metic Weight w, we would generate all combinations of strings

given a certain HammingWeight w. This was then used to calculate

all numbers whose standard polynomial representation match that

string. If the calculated number already existed in a lower bin we

discarded the value, otherwise we inserted it into the current bin.

We utilized this algorithm to generate 64-bit numbers, as our

pointers would be encoded using up to a 64 bit codeword even

though they only took up 48 bits.

In Table 2, we list the number of words in the first 6 Arithmetic

Weight bins we generated. We emphasize the increasing amount of

numbers per each bin, and how the increasing bin sizes might limit

the speed of the correction algorithm as currently implemented.

Figure 8: D for all primes in the range [2, 216]

5.5 Maximum Correctable Distance
We now describe the methodology for finding the maximum cor-

rectable distance D of an AN Code. Given an AN Code A, iterate
through all the values C in a bin of Arithmetic Weight w. If, for
any value in the bin Arithmetic Weight w, 𝐶 % 𝐴 == 0, then the

maximum correctable distance of A is𝑤 − 1. For example, if you are
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Table 3: AN Codes with Maximum Correctable Distance D

Max. Correctable Dist. Count

0 67

1 872

2 4032

3 1571

4 1

iterating through the elements of bin 3, and you find an element

which A is a factor of, then D is 2.

Using the algorithm described above, we plot the maximum

correctable distance D for all prime numbers in the range [2, 216].
in Figure 8. To further expound on this data, we use Table 3 to show

the number of AN Codes with had a given maximum correctable

distance D.
There were no prime numbers in our range which had a D larger

than 4 given our 64 bit space. The prime number with the highest D
of 4 was 33791. As such, generating the bins of Arithmetic Weights

larger than 5 is unnecessary, and using the bins of Arithmetic

Weights larger than 4 in the correction algorithm is also not needed

as no AN Code will correct using the bins beyond 4.

6 AN Code Analysis
In a full-system implementation of AN encoded pointers, it is rec-

ommended that only a single AN code be chosen to encode all

values. This is because performing operations using values that are

encoded with different AN values will lead to malformed results.

Additionally, the overhead of keeping track of which pointer is

encoded with which respective AN Code would be unwieldy and

unmanageable.

Furthermore, we imagine a constant AN code could be optimized

within the hardware to reduce the overhead of the encoding scheme.

This could lead to a negligible CPI impact on the encoding and

decoding of values. However, confirmation of this belief is left for

later work.

Therefore, we first conducted our research with a search for

the best AN Code values for protecting against single bit-flips. We

did this to establish the baseline for comparison with the SECDED

behavior of Hamming (7,4) Codes. Next, we took to our C++ Gate-

Level Simulation to observe how our AN Codes could be used to

correct errors in our previously analyzed arithmetic modules.

6.1 Single-Bit Error Analysis
We will briefly discuss our initial search to see how AN Codes

could protect against single bit-flips. To do this, we created a tem-

plated C++ class that behaved syntactically like a pointer. This class

would automatically manage the encoding and decoding of words

as needed, and allowed for single bit error injection. Our stress

testing methodology consisted of injecting a single bit error every

time a pointer access was made, and then flipping a random bit in

the 64-bit codeword. We tested this on a modified benchmark suite

from our EECS 470 class that increased the number of total pointer

accesses.

Our method for correction in the single-bit error analysis was

to first check the modulo of the codeword with the AN code. If it

was not zero, then a bit-flip had occurred and it required us to step

through every bit of the codeword, test flipping every bit until the

modulo of the codeword was 0.

We observed that naively searching for AN values by testing

all codes would not yield an objective best AN code or observable

pattern. However, we did observe some takeaways. Encoding a

word with a power of 2 led to a 0% success rate since a bit-flip

would eventually occur on the exact bit that made the modulo of

the code 0.

Searching through all prime numbers in the range [2, 216] yielded
more comprehensive results.

Figure 9: Success % of all Primes in the Range [2, 216]

Out of the 6542 prime numbers in our range, 6420 (98.12%) had
a 100% Success Rate on Single-Bit flip errors. The larger the prime

number, the more likely its codebook will consist of unique and

distant codewords.

We make the note here that from this point of the paper until the

end, all of our AN Code analysis used the set of all prime numbers in

the range [2, 216]. Searching through a set that was proven to have

a vast majority of numbers that were on par with SECDED schemes

led to more productive and insightful results in our proceeding

error analysis.

6.2 Ripple Carry Adder AN Code Analysis
We now present our AN Code analysis on our Ripple Carry Adder.

As observed previously, the maximum arithmetic distance of the

generated result and expected result of the RCA is 1, no matter the

AN Code used to encode the values.

As shown in Figure 10, the average Arithmetic Distance is lower

than the average Hamming Distance for all AN Codes. The average

Hamming Distance is greater than 1 in all cases of AN codes, mean-

ing that a SECDED scheme such as Hamming (7,4) Codes could not

recover from all bit-flip errors introduced in a RCA.

In our analysis shown in Figure 11, we plot the rates for relevant

data in RCA. We iterated through every gate on the RCA, flipping

the result of the gate and observing whether the AN Code would be

able to correct the value. We observed the following: relevant rates

for the bit-flips that caused no change to the Hamming Distance

or Arithmetic Distance; the bit-flips errors that were recovered
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Figure 10: Avg. Hamming and Arithmetic Distances for RCA

Figure 11: Recovery Rates for AN Codes on the RCA

successfully by the AN Code; the bit-flip errors that were detected

by the AN Code and caused an exception; and the bit-flips that

were undetected by the AN Code and would have caused an error

later on.

An AN Code that can fix and detect more errors than leave

them undetected is a good choice to use in an encoding scheme.

Ideally, a perfect AN Code would be able to recover from all errors

introduced.

In our results, we observe that most large AN Codes can either

correct 100% of the errors introduced or detect 100% of the errors.

In the RCA, this seems to be mutually exclusive. As expected, larger

AN Code values are able to more reliably correct all errors than

smaller AN Code values.

6.3 Kogge-Stone Adder AN Code Analysis
For the Kogge-Stone Adder, the average of the maximum arithmetic

distance observed per ANCode was 22.03. This somewhat precludes

our analysis on the recovery behavior of AN Codes, as no AN Code

will be able to correct an error of such a high arithmetic distance.

Figure 12 plots the Average Hamming Distance and Arithmetic

Distance between the actual and expected result of the KSA. For

the first prime numbers from 2→ 1481, there is a distinct increase

in both the Average Hamming and Arithmetic Distances. However,

Figure 12: Avg. Hamming and Arithmetic Distances for KSA

this does not correlate with a higher chance of success than all

larger AN prime numbers.

Figure 13: Recovery Rates for AN Codes on the KSA

The same error recovery rates as plotted for the RCA are plotted

for the KSA in Figure 13. As expected with the analysis for the Error

Propagation of the KSA, around 30% of the gate errors introduced

required no recovery. We also again observe that larger AN values

tend to be more likely to recover or detect from more errors.

According to our standards, a good AN Code would be one that

had 0 undetectable errors, minimized the number of detected errors,

and recovered the majority of errors.

There was not a single AN-Code in our range of prime numbers

from [2, 216] was 100% successful (no undetected or detected errors).

The single highest Success % was for the AN Code value of 44543,

which recovered 63.03% of errors, and detected 3.27%, suffered 0.45%

undetected errors, and the remaining 33.26% were bit-flips that had

no effect on the final result.

The ANCode that had no undetectable errors and had the highest

Success % out of this standard was 64451. This AN Code had a

recovery rate of 62.14%, detected but failed recovery error rate of

5.12%, an undetected error rate of 0%, and a no effect rate of 32.74%.

We again note that the high rate of uncorrectable errors in the

Kogge-Stone Adder are because of its architectural differences from

the Ripple-Carry Adder. The linear carry structure of the RCA leads

to a predictable error that is in line with the model used to delineate
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the alternative representation of a number used for its Arithmetic

Weight. Because of the tree-based structure of the carry-out of

the KSA, the errors do not fall in line with the previous model of

expected errors, and as such lead to increased Arithmetic Distances.

6.4 Carry-Save Multiplier AN Code Analysis
For the Carry-Save Multiplier, we were not able to plot the entire

previously used range of AN Code values due to time constraints

and a temporally-inefficient testing methodology. However, the

results generated are conclusive enough to show the pattern present

in the Carry-Save Multiplier.

Figure 14: Avg. Hamming and Arithmetic Distances for CSM

We plot the average Hamming Distances and average Arithmetic

Distance for the Carry-Save Multiplier in Figure 14. Similarly to the

other arithmetic modules observed, the average Hamming Distance

is always larger than the average Arithmetic Distance.

The only observed values for Arithmetic Distance in the Carry-

Save Multiplier were 0 and 1. This is due to the fact that the Carry-

SaveMultiplier has a linear carry-out structure similar to the Ripple-

Carry Adder.

Figure 15: Recovery Rates for AN Codes on the CSM

Our Error Recovery rates for each respective AN Code using the

Carry-Save Multiplier is plotted in Figure 15. Similar to the RCA,

there is a low chance (< 5%) that the error will be masked out by

proceeding logic. Additionally, we observe that most AN Codes

can either correct 100% of the errors introduced or detect 100% of

errors.

Using a SECDED scheme such as Hamming (7,4) Codes would

leave most errors in the Carry-Save Multiplier undetectable and

uncorrectable, allowing them to cause further unintended effects

when latched into memory elements.

For the Carry-Save Multiplier, the maximum Hamming Distance

that we observed our AN Code scheme correct was 42. This was

done with a relatively low AN Code value, 7177. We note that this

is not part of our analysis of AN Codes with respect to one another;

rather it emphasizes the correction performance of AN Codes over

their Hamming (7,4) counterpart.

7 Conclusion
Our work introduced AN Codes specifically for the purpose of

encoding 48-bit pointers in a 64-bit space. To motivate the usage of

AN Codes over a common ECC scheme such as Hamming Codes,

we outlined how common Hamming Codes were incompatible with

pointer arithmetic and how the Error Ripple Model shows how

transient faults may have more pronounced effects than a single

bit-flip in a memory element.

We outlined the practical usage of both Arithmetic and Hamming

distances and weights and created a C++ gate-level simulation to

identify and analyze error propagation in three common arithmetic

modules.

Our work also developed an error correction and detection al-

gorithm for AN-Codes, something not commonly discussed in the

existing literature. We then used our algorithm to analyze how our

set of primes in the range [2, 216] performed with correcting and

detecting errors beyond the limits of a Hamming Code scheme. We

highlight that we were able to observe a 42-bit correction on an

error in the multiplier.

8 Future Work
We propose extending PECCA to work across the full stack: Soft-

ware→ Operating System→ Compiler→ Hardware. On the soft-

ware side of the stack, this means extending our C++ templated

class (used in the single-bit error analysis) to have specific compiler

support for explicit programmer usage of encoding and protecting

values.

Further analysis could be undertaken in other common logical

and arithmetic modules to see how errors affect them - and how AN

Codes fare with correcting them. Our initial analysis did not include

the KSA, but after evaluation, it gave us more insight into how the

structure of combinational logic can lead to increased errors. An

interesting consequence of this is that trade-offs between speed

and reliability are made even at the most basic architectural levels.

Regarding speed, we would like to see if it is possible to develop

a faster way to generate the numbers for each arithmetic weight as

well as the actual correction algorithm itself. Currently, correction

involves brute force searching for the nearest codeword, which is

quite slow. Future work would hopefully find a method to reduce

the search space or even a completely different algorithm that does

not involve brute force.
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